Методические материалы, статьи

Этот трехмерный, четырехмерный, многомерный мир…

Сколько измерений имеет пространство мира, в котором мы живем?

Что за вопрос! Конечно, три — скажет обычный человек и будет прав. Но есть еще особая порода людей, имеющих благоприобретенное свойство сомневаться в очевидных вещах. Эти люди называются «учеными», поскольку их специально этому учат. Для них наш вопрос не так прост: измерение пространства — вещь трудноуловимая, их нельзя просто пересчитать, показывая пальцем: один, два, три. Нельзя измерить их число и каким-нибудь прибором вроде линейки или амперметра: пространство имеет 2,97 плюс-минус 0,04 измерения. Приходится продумывать этот вопрос глубже и искать косвенные способы. Такие поиски оказались плодотворным занятием: современная физика считает, что число измерений реального мира тесно связано с самыми глубокими свойствами вещества. Но путь к этим идеям начался с пересмотра нашего обыденного опыта.

Обычно говорят, что мир, как и всякое тело, имеет три измерения, которым соответствуют три разных направления, скажем, «высота», «ширина» и «глубина». Кажется ясным, что «глубина», изображенная на плоскости рисунка, сводится к «высоте» и «ширине», является в некотором смысле их комбинацией. Так же ясно, что в реальном трехмерном пространстве все мыслимые направления сводятся к каким-то трем заранее выбранным. Но что означает «сводятся», «являются комбинацией»? Где будут эти «ширина» и «глубина», если мы окажемся не в прямоугольной комнате, а в невесомости где-нибудь между Венерой и Марсом? Наконец, кто поручится, что «высота», скажем, в Москве и Нью-Йорке — это одно и то же «измерение»?

Беда в том, что мы уже знаем ответ к задаче, которую пытаемся решить, а это далеко не всегда полезно. Вот если бы оказаться в мире, число измерений которого заранее не известно, и отыскивать их по одному… Или, по крайней мере, так отрешиться от наличных знаний о действительности, чтобы посмотреть на ее первоначальные свойства совсем по-новому.

Булыжник — орудие математика

В 1915 году французский математик Анри Лебег придумал, как определить число измерений пространства, не пользуясь понятиями высоты, ширины и глубины. Чтобы понять его идею, достаточно внимательно посмотреть на брусчатую мостовую. На ней легко можно найти места, где камни сходятся по три и по четыре. Можно замостить улицу квадратными плитками, которые будут примыкать друг к другу по две или по четыре; если взять одинаковые треугольные плитки, они будут примыкать по две или по шесть. Но ни один мастер не сможет замостить улицу так, чтобы булыжники везде примыкали друг к другу только по два. Это настолько очевидно, что смешно и предполагать обратное.

Математики отличаются от нормальных людей именно тем, что замечают возможность таких абсурдных предположений и умеют делать из них выводы. В нашем случае Лебег рассуждал так: поверхность мостовой, безусловно, двумерна. В то же время на ней неизбежно есть точки, где сходятся по меньшей мере три булыжника. Попробуем обобщить это наблюдение: скажем, что размерность какой-то области равна N, если при ее замощении не удается избежать соприкосновений N + 1 или большего числа «булыжников». Теперь трехмерность пространства подтвердит любой каменщик: ведь при выкладывании толстой, в несколько слоев стены обязательно будут точки, где соприкоснутся не менее чем четыре кирпича!

Однако на первый взгляд кажется, что к лебеговскому определению размерности можно найти, как выражаются математики, «контрпример». Это дощатый пол, в котором половицы соприкасаются ровно по две. Чем не замощение? Поэтому Лебег потребовал еще, чтобы «булыжники», используемые в определении размерности, были маленькими. Это важная идея, и в конце мы вернемся к ней еще раз — в неожиданном ракурсе. А сейчас ясно, что условие малой величины «булыжников» спасает определение Лебега: скажем, короткие паркетины, в отличие от длинных половиц, в некоторых точках обязательно будут соприкасаться по три. Значит, три измерения пространства — это не просто возможность произвольно выбрать в нем какие-то три «разных» направления. Три измерения — это реальное ограничение наших возможностей, которое легко почувствовать, немного поиграв с кубиками или кирпичами.

Размерность пространства глазами Штирлица

Другое ограничение, связанное с трехмерностью пространства, хорошо чувствует узник, запертый в тюремной камере (например, Штирлиц в подвале у Мюллера). Как выглядит эта камера с его точки зрения? Шершавые бетонные стены, плотно запертая стальная дверь — словом, одна двумерная поверхность без щелей и отверстий, огораживающая со всех сторон замкнутое пространство, где он находится. Из такой оболочки деться действительно некуда. А можно ли запереть человека внутри одномерного контура? Представьте, как Мюллер рисует вокруг Штирлица мелом круг на полу и уходит восвояси: это не тянет даже на анекдот.

Из этих соображений извлекается еще один способ определить число измерений нашего пространства. Сформулируем его так: огородить со всех сторон область N-мерного пространства можно только (N-1)-мерной «поверхностью». В двумерном пространстве «поверхностью» будет одномерный контур, в одномерном — две нульмерные точки. Это определение придумал в 1913 году голландский математик Брауэр, но известным оно стало только спустя восемь лет, когда его независимо друг от друга, переоткрыли наш Павел Урысон и австриец Карл Менгер.

Здесь наши пути с Лебегом, Брауэром и их коллегами расходятся. Новое определение размерности было нужно им для того, чтобы построить абстрактную математическую теорию пространств любой размерности вплоть до бесконечной. Это — чисто математическая конструкция, игра человеческого ума, который достаточно силен даже для познания таких странных объектов, как бесконечномерное пространство. Математики не пытаются узнать, существуют ли на самом деле вещи, обладающие такой структурой: это не их профессия. Напротив, наш интерес к количеству измерений мира, в котором мы живем, физический: мы хотим узнать, сколько их на самом деле и как почувствовать их число «на своей шкуре». Нам нужны явления, а не чистые идеи.

Характерно, что все приведенные примеры были заимствованы более или менее из архитектуры. Именно эта область деятельности людей теснее всего связана с пространством, как оно представляется нам в обычной жизни. Чтобы продвинуться в поиске измерений физического мира дальше, потребуется выход к другим уровням реальности. Они доступны человеку благодаря современной технологии, а значит — физике.

При чем здесь скорость света?

Ненадолго вернемся к оставленному в камере Штирлицу. Чтобы выбраться из оболочки, надежно отделявшей его от остальной части трехмерного мира, он воспользовался четвертым измерением, которому не страшны двумерные преграды. А именно, он некоторое время подумал и нашел себе подходящее алиби. Иначе говоря, новое загадочное измерение, которым воспользовался Штирлиц, — это время.

Трудно сказать, кто первым заметил аналогию между временем и измерениями пространства. Два века назад об этом уже знали. Жозеф Лагранж, один из создателей классической механики, науки о движениях тел, сравнил ее с геометрией четырехмерного мира: его сравнение звучит, как цитата из современной книги по Общей теории относительности.

Ход мысли Лагранжа, впрочем, легко понять. В его время уже были известны графики зависимости переменных величин от времени, вроде нынешних кардиограмм или графиков месячного хода температуры. Такие графики рисуют на двумерной плоскости: вдоль оси ординат откладывают путь, пройденный переменной величиной, а вдоль оси абсцисс — прошедшее время. При этом время действительно становится просто «еще одним» геометрическим измерением. Точно так же можно добавить его и к трехмерному пространству нашего мира.

Но действительно ли время похоже на пространственные измерения? На плоскости с нарисованным графиком есть два выделенных «осмысленных» направления. А направления, не совпадающие ни с одной из осей, смысла не имеют, они не изображают ничего. На обычной же геометрической двумерной плоскости все направления равноправны, выделенных осей нет.

По-настоящему время можно считать четвертой координатой, только если оно не будет выделено среди остальных направлений в четырехмерном «пространстве-времени». Надо найти способ «вращать» пространство-время так, чтобы время и пространственные измерения «смешивались» и могли в определенном смысле переходить друг в друга.

Этот способ нашли Альберт Эйнштейн, создавший теорию относительности, и Герман Минковский, придавший ей строгую математическую форму. Они воспользовались тем, что в природе есть универсальная скорость — скорость света.

Возьмем две точки пространства, каждую — в свой момент времени, или два «события» на жаргоне теории относительности. Если умножить на скорость света интервал времени между ними, измеренный в секундах, то получится определенное расстояние в метрах. Будем считать, что этот воображаемый отрезок «перпендикулярен» пространственному расстоянию между событиями, а вместе они образуют «катеты» какого-то прямоугольного треугольника, «гипотенуза» которого — это отрезок в пространстве-времени, соединяющий выбранные события. Минковский предложил: чтобы найти квадрат длины «гипотенузы» этого треугольника, будем не прибавлять квадрат длины «пространственного» катета к квадрату длины «временного», а вычитать его. Конечно, при этом может получиться отрицательный результат: тогда считают, что «гипотенуза» имеет мнимую длину! Но какой же в этом смысл?

При вращении плоскости длина любого нарисованного на ней отрезка сохраняется. Минковский понял, что надо рассматривать такие «вращения» пространства-времени, которые сохраняют предложенную им «длину» отрезков между событиями. Именно так можно добиться, чтобы скорость света была в построенной теории универсальной. Если два события связаны световым сигналом, то «расстояние Минковского» между ними равно нулю: пространственное расстояние совпадает с интервалом времени, умноженным на скорость света. «Вращение», предложенное Минковским, сохраняет это «расстояние» нулевым, как бы ни смешивались при «повороте» пространство и время.

Это не единственная причина, по которой «расстояние» Минковского обладает реальным физическим смыслом, несмотря на крайне странное для неподготовленного человека определение. «Расстояние» Минковского дает способ построить «геометрию» пространства-времени так, что и пространственные, и временные интервалы между событиями удается сделать равноправными. Пожалуй, именно в этом заключается главная идея теории относительности.

Итак, время и пространство нашего мира так тесно связаны друг с другом, что трудно понять, где кончается одно и начинается другое. Вместе они образуют что-то вроде сцены, на которой разыгрывается спектакль «История Вселенной». Действующие лица — частицы материи, атомы и молекулы, из которых собраны галактики, туманности, звезды, планеты, а на некоторых планетах — даже живые разумные организмы (читателю должна быть известна по меньшей мере одна такая планета).

Опираясь на открытия предшественников, Эйнштейн создал новую физическую картину мира, в которой пространство и время оказались неотделимы друг от друга, а действительность стала по-настоящему четырехмерной. И в этой четырехмерной действительности «растворилось» одно из двух известных тогдашней науке «фундаментальных взаимодействий»: закон всемирного тяготения свелся к геометрической структуре четырехмерного мира. Но Эйнштейн ничего не смог сделать с другим фундаментальным взаимодействием — электромагнитным.

Пространство-время приобретает новые измерения

Общая теория относительности настолько красива и убедительна, что сразу после того, как она стала известна, другие ученые попытались пройти по тому же пути дальше. Эйнштейн свел к геометрии гравитацию? Значит, на долю его последователей остается геометризовать электромагнитные силы!

Так как возможности метрики четырехмерного пространства Эйнштейн исчерпал, его последователи стали пытаться как-то расширить набор геометрических объектов, из которых можно было бы сконструировать такую теорию. Вполне естественно, что им захотелось увеличить число размерностей.

Но пока теоретики занимались геометризацией электромагнитных сил, были открыты еще два фундаментальных взаимодействия — так называемые сильное и слабое. Теперь надо было объединить уже четыре взаимодействия. При этом возникла масса неожиданных трудностей, для преодоления которых изобретались новые идеи, все дальше уводившие ученых от наглядной физики прошлого века. Стали рассматривать модели миров, имеющих десятки и даже сотни измерений, пригодилось и бесконечномерное пространство. Чтобы рассказать об этих поисках, нужно было бы написать целую книжку. Нам важен другой вопрос: где же расположены все эти новые измерения? Можно ли почувствовать их так же, как мы ощущаем время и трехмерное пространство?

Представьте себе длинную и очень тонкую трубочку — например, пустой внутри пожарный шланг, уменьшенный в тысячу раз. Это двумерная поверхность, но два ее измерения неравноправны. Одно из них, длину, заметить легко — это «макроскопическое» измерение. Периметр же — «поперечное» измерение — можно разглядеть только под микроскопом. Современные многомерные модели мира похожи на эту трубочку, хотя они имеют не одно, а четыре макроскопических измерения — три пространственных и одно временное. Остальные измерения в этих моделях нельзя рассмотреть даже под электронным микроскопом. Чтобы обнаружить их проявления, физики пользуются ускорителями — очень дорогими, но грубыми «микроскопами» для субатомного мира.

Пока одни ученые совершенствовали эту впечатляющую картину, блестяще преодолевая одно препятствие за другим, у других назрел каверзный вопрос:

Может ли размерность быть дробной?

А почему бы и нет? Для этого надо «просто» найти новое свойство размерности, которое могло бы связать ее с нецелыми числами, и обладающие этим свойством геометрические объекты, имеющие дробную размерность. Если мы хотим найти, например, геометрическую фигуру, имеющую полтора измерения, то у нас есть два пути. Можно пытаться либо отнять пол-измерения у двумерной поверхности, либо добавить пол-измерения к одномерной линии. Чтобы это сделать, потренируемся сперва на добавлении или отнятии целого измерения.

Есть такой известный детский фокус. Фокусник берет треугольный листок бумаги, делает на нем надрез ножницами, сгибает листок по линии надреза пополам, делает еще один надрез, опять сгибает, надрезает последний раз, и — ап! — в его руках оказывается гирлянда из восьми треугольничков, каждый из которых совершенно подобен исходному, но в восемь раз меньше его по площади (и в корень квадратный из восьми раз — по размерам). Возможно, этот фокус показали в 1890 году итальянскому математику Джузеппе Пеано (а может быть, он сам любил его показывать), во всяком случае, именно тогда он заметил вот что. Возьмем идеальную бумагу, идеальные ножницы и повторим последовательность надрезания и складывания бесконечное число раз. Тогда размеры отдельных треугольничков, получаемых на каждом шаге этого процесса, будут стремиться к нулю, а сами треугольники стянутся в точки. Стало быть, мы получим из двумерного треугольника одномерную линию, не потеряв при этом ни кусочка бумаги! Если не растягивать эту линию в гирлянду, а оставить такой «скомканной», как у нас получилось при разрезании, то она заполнит треугольник целиком. Более того, под каким сильным микроскопом мы бы ни рассматривали этот треугольник, увеличивая его фрагменты в любое число раз, получаемая картина будет выглядеть точно так же, как неувеличенная: выражаясь научно, кривая Пеано имеет одинаковую структуру при всех масштабах увеличения, или является «масштабно инвариантной».

Итак, изогнувшись бесчисленное множество раз, одномерная кривая смогла как бы приобрести размерность два. Значит, есть надежда и на то, что менее «скомканная» кривая будет иметь «размерность», скажем, полтора. Но как же найти способ измерять дробные размерности?

В «булыжном» определении размерности, как помнит читатель, надо было использовать достаточно маленькие «булыжники», иначе результат мог получиться неправильный. Но маленьких «булыжников» потребуется много: тем больше, чем меньше их размер. Оказывается, для определения размерности не обязательно изучать, как «булыжники» прилегают друг к другу, а достаточно лишь выяснить, как возрастает их число при уменьшении величины.

Возьмем отрезок прямой длиной 1 дециметр и две кривых Пеано, вместе заполняющих квадрат размером дециметр на дециметр. Будем покрывать их маленькими квадратными «булыжниками» с длиной стороны 1 сантиметр, 1 миллиметр, 0,1 миллиметра и так далее вплоть до микрона. Если выражать размер «булыжника» в дециметрах, то на отрезок потребуется число «булыжников», равное их размеру в степени минус единица, а на кривые Пеано — размеру в степени минус два. При этом отрезок определенно имеет одно измерение, а кривая Пеано, как мы видели, — два. Это не просто совпадение. Показатель степени в соотношении, связывающем число «булыжников» с их размером, действительно равен (со знаком минус) размерности той фигуры, которая ими покрыта. Особенно важно, что показатель степени может быть дробным числом. Например, для кривой, промежуточной по своей «скомканности» между обычной линией и порой плотно заполняющих квадрат кривых Пеано, величина показателя будет больше 1 и меньше 2. Это и открывает нужную нам дорогу к определению дробных размерностей.

Именно таким способом была определена, например, размерность береговой линии Норвегии — страны, имеющей очень изрезанное (или «скомканное» — как кому больше нравится) побережье. Конечно, замощение булыжниками берега Норвегии происходило не на местности, а на карте из географического атласа. Результат (не абсолютно точный из-за невозможности на практике дойти до бесконечно малых «булыжников») составил 1,52 плюс-минус одна сотая. Ясно, что размерность не могла получиться меньше единицы, поскольку речь идет все-таки об «одномерной» линии, и больше двух, поскольку береговая линия Норвегии «нарисована» на двумерной поверхности земного шара.

Человек как мера всех вещей

Дробные размерности — это прекрасно, может сказать здесь читатель, но какое отношение они имеют к вопросу о числе измерений мира, в котором мы живем? Может ли случиться, что размерность мира дробная и не точно равна трем?

Примеры кривой Пеано и побережья Норвегии показывают, что дробная размерность получается, если кривая линия сильно «скомкана», заложена в бесконечно малые складочки. Процесс определения дробной размерности тоже включает в себя использование безгранично уменьшающихся «булыжников», которыми мы покрываем изучаемую кривую. Поэтому дробная размерность, выражаясь научно, может проявляться только «на достаточно малых масштабах», то есть показатель степени в соотношении, связывающем число «булыжников» с их размером, может лишь в пределе выходить на свое дробное значение. Наоборот, одним огромным булыжником можно накрыть фрактал — объект дробной размерности — конечных размеров неотличим от точки.

Для нас мир, в котором мы живем, — это прежде всего тот масштаб, на котором он доступен нам в повседневной действительности. Несмотря на поразительные достижения техники, его характерные размеры все еще определяются остротой нашего зрения и дальностью наших пеших прогулок, характерные промежутки времени — быстротой нашей реакции и глубиной нашей памяти, характерные величины энергии — силой тех взаимодействий, в которые вступает наше тело с окружающими вещами. Мы ненамного превзошли здесь древних, да и стоит ли стремиться к этому? Природные и технологические катастрофы несколько расширяют масштабы «нашей» действительности, но не делают их космическими. Микромир тем более недоступен в нашей повседневной жизни. Открытый перед нами мир — трехмерный, «гладкий» и «плоский», он прекрасно описывается геометрией древних греков; достижения науки в конечном счете должны служить не столько расширению, сколько защите его границ.

Так что же все-таки ответить людям, ждущим открытия скрытых размерностей нашего мира? Увы, единственное доступное для нас измерение, которое мир имеет сверх трех пространственных, — это время. Мало это или много, старо или ново, чудесно или обыденно? Время — это просто четвертая степень свободы, и воспользоваться ею можно очень по-разному. Вспомним еще раз того же Штирлица, кстати, физика по образованию: у каждого мгновенья свой резон…

Андрей Соболевский



См. также:
Интернет-магазины компьютерных игр: удобство выбора и многообразие предложений
Контент-план и его создание с помощью искусственного интеллекта
Типографские услуги
ПРОЕКТ
осуществляется
при поддержке

Окружной ресурсный центр информационных технологий (ОРЦИТ) СЗОУО г. Москвы Академия повышения квалификации и профессиональной переподготовки работников образования (АПКиППРО) АСКОН - разработчик САПР КОМПАС-3D. Группа компаний. Коломенский государственный педагогический институт (КГПИ) Информационные технологии в образовании. Международная конференция-выставка Издательский дом "СОЛОН-Пресс" Отраслевой фонд алгоритмов и программ ФГНУ "Государственный координационный центр информационных технологий" Еженедельник Издательского дома "1 сентября"  "Информатика" Московский  институт открытого образования (МИОО) Московский городской педагогический университет (МГПУ)
ГЛАВНАЯ
Участие вовсех направлениях олимпиады бесплатное

Номинант Примии Рунета 2007

Всероссийский Интернет-педсовет - 2005